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THEORY OF NONLINEAR WAVES IN A PLASMA
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Stationary nonlinear waves propagating in a cold rarefied plasma com-
posed of electrons and two types of ions are considered. The structure
of isolated waves and shock waves is found. In recent years an inten-
sive study has been made of finite~amplitude waves and collisionless
shock waves in a rarefied plasma, in connection with laboratory ex-
periments [1] and astrophysical applications (the problem of the in~
teraction of the "solar wind” with the Earth’s magnetosphere [2]). When
allowance is made for dispersion effects associated with the departure
of the dispersion law w = w(k) from the linear, and for the compensat-
ing nonlinear twisting of the wave profile, we are able to obtain the
profile of stationary nonlinear waves of finite amplitude, and when
allowance is made for damping we can also obtain the structure of a
collisionless shock wave [3], Such waves have been studied fairly fully
for the case of a two-component plasma. The present paper examines
stationary nonlinear waves propagating across a magnetic field in a
cold rarefied quasi-neutral plasma composed of electrons and two
types of ions.

The nature of the dispersion law w = w (k) for small-
amplitude waves in the three-component plasma under
consideration is illustrated in Fig. 1 (see also [4]);
here and in what follows
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The index 1 corresponds to the heavier type of ion,
njg is the unperturbed density of the j-th ion type, n,
is the unperturbed electron density. At low frequen-
cies the phase velocity of small oscillations is
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For comparatively small nonlinear wave velocities
the lower branch of the dispersion curve is basically
the "operative" one, and the characteristic dimen-
sions of the compression waves which may exist for
such a dispersion law are equal in order of magnitude
to 6 ~ VA/w (*), which gives
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in the interesting case of a small admixture of a light
component or a large difference in ion masses ma >
>> mzaz.

As the wave velocity increases, the upper branch
begins to play a part, and the nonlinear wave profile
changes, as will be clear from what follows. For

frequencies w > w(®) the upper branch of the dis-
persion curve has the asymptote
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In the region of frequencies large compared with
wy, wy, the departure of this branch from linear be-
havior becomes quite clear for the hybrid frequency

o= L
b Vimgm, ¢

but this region has been thoroughly studied (disper-

sion effects associated with electron inertia) and is

not cousidered here, ’
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Fig. 1

We now pass to the study of nonlinear stationary
waves, In a coordinate system moving with the wave
velocity U the appropriate equations may be written
in the form
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Here the index.j = 1, 2 determines the type of ion,
the x axis is in the direction of motion of the plasma
ahead of the wave, the z axis coincides with the direc-
tion of the magnetic field, H, is the unperturbed mag-
netic field.

The electron velocity is determined from the drift
approximation, since we are interested in the region
of frequencies w < wp. By means of fairly simple
transformations we obtain the equation
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Fig. 2

If the condition mo; > myw, is fulfilled, then the
velocity of the heavy component (3) assumes the sim-
ple form '
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and equation (2) may be integrated once
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Here hy, h,, h; are the roots of the equation h® -
- @M? + 1)h + 2M%y, = 0. Choice of the constant of
integration corresponds to an isolated wave, Equation
(4) allows us to establish a connection between the
velocity of an isolated wave and the maximum magne-
tic field strength in the wave, This function is given
in Fig. 2 for different values of the relative concen-
trations of different types of ions. For small ampli-
tudes of the magnetic field the velocity of an isolated
wave is equal to

M = 1/2 (1 4 Bmax) . (5)

As hmax increases, the wave velocity increases
more rapidly than is given by formula (5), This de-
parture from linearity sets in all the more rapidly
as the relative concentration of the light component
decreases.

In the region where the velocity M depends linearly

on the amplitude of the magnetic field hmax the pro-
file of an isolated wave takes the familiar form of a

symmetrical hump. In the case of small amplitudes
h - 1 «< 1 we may obtain an analytical expression for
the magnetic field in an isolated wave
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" For large wave velocites when the relation M = M (hmax) is non-
linear, the form of an isolated wave changes radically, since the
upper branch of the dispersion curve begins to play a part, A typical
isolated wave profile in a three-component plasma at large velocities,
obtain by numerical solution of the system of equations (1), is re-
presented in Fig. 3. -As the concentration of the light component
decreases, the linear dimension of the isolated wave also decreases,
which is in agreement with estimates from the linear theory given
above; in addition to this, the size of the "hollow" in the center of
the wave decrases. We note that the solution referred to exists only
for wave velocities less than a certain critical value, which depends
on the relative concentrations of the light and heavy components. The
singular point of system of equations (1) corresponding to the unper~
turbed state of the plasma in front of the wave is a saddle point (the
integral curve starts out from this point), if the condition
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is fulfilled.

The lower limit of the wave velocity is, of course, equal to the
velocity of sound, and the upper limit is equal to the phase velocity
of small oscillations for frequencies which are large compared with
wy, wy. Asthe wave velocity approaches this upper limit, the light
component is "swept out” of the wave, and dispersion effects com-
pensating the nonlinear twisting appear at higher frequencies
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and depend upon the electron inertia, The critical value of the wave
velocity, and consequently the maximal magnetic field in the wave,
decreases as the relative concentration of the light component de-
creases. Thus for small concentrations of the lighter type of ion the
amplitudes of isolated waves in the frequency range
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will be small.

We shall estimate the energy of ions in the wave.
The energy of heavy ions in the direction of wave mo-
tion ("longitudinal” energy) is equal in order of mag-
nitude to
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The "transverse" energy of light ions is equal in
order of magnitude to
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Taking into account the fact that
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we obtain g =/ &0 ~1, and the energies for a single
frequency are estimated as follows:
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Whence it follows that when the isolated wave con-
sidered above propagates in a three-component plasma
an accelerating mechanism occurs which accelerates
the light ions in a direction perpendicular to the direc-
tion of wave motion.

If the friction between the plasma components is
introduced into the initial equations, we obtain a shock
wave with an oscillatory structure having a steep lead-
ing edge. The profile of such a wave is depicted qual-
itatively in Fig, 4.

Fig. 4
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